
The algebraic method for two-dimensional quantum atomic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 1409

(http://iopscience.iop.org/0305-4470/26/6/022)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 1409-1418. Printed in the UK 

The algebraic method for two-dimensional quantum 
atomic systems 

Le Van Hoang and Nguyen Thu Giang 
Department of Theoretical Physics, Byelorussian State University, Minsk 220080, 
Republic of Belams 

Received IS June 1992 

Abstract. We propose an easy and effective variant of the realization of the dynamical 
symmetry of hydrogen-like atoms in two-dimensional space, based on the relationship 
between the Schrodinger equation for the isotropic harmonic oscillator in one-dimensional 
complex space and the Schrodinger equation for the one-electron atom in two-dimensional 
space, that permits us to use the operator method to solve the Schrodinger equation 
for the two-dimensional atomic system. For illustration of the algebraic method, we 
consider the problem of the two-dimensional hydrogenic donor in a magnetic field. By the 
use of the path integral we also establish the relationship between the two-dimensional 
Coulomb Green function and the Green function for the isotropic harmonic oscillator in 
one-dimensional complex space. 

1. Introduction 

The connection between the problem of hydrogen-like atoms and the problem of the 
isotropic harmonic oscillator was found long ago (see, for example, Bergmann and 
Frishman 1965). At the present moment it is well known (Cordani 1989) that the 
above-mentioned connection was established only for one-, two-, three- and five- 
dimensional hydrogen-like atoms. Naturally, from them only the connection for three- 
dimensional hydrogen-like atom is used in a number of atomic problems (Boiteux 
1973, Komarov and Romanova 1982, Kibler and Negadi 1983, Iwai 1982, Chetouani 
and Hammann 1987, etc). Specifically, it was used in Kibler et al (1986) and Komarov 
el al (1987) to construct the perturbation method for the solution of the Schrodinger 
equation for hydrogen-like atoms in an electomagnetic field. Recently the problem of 
the two-dimensional atomic system has been evoking great interest for a number of 
authors because of its importance in several practical problems ((Jia-Lin Zhu et al 
1990, Kramer and Wallis 1988, Greene and Bajaj 1985, etc). One, certainly, can use 
effectively the well considered connection (for three-dimensional hydrogen-like atom, 
see Komarov and Romanova 1982) and the operator method (Feranchuk and Komarov 
1982) for solving the two-dimensional atomic problems. However, from our point of 
view, the working out of a new way to use an algebraic method directly for two- 
dimensional atomic problems is extremely desirable. Therefore in the present paper 
we develop the connection between the Schrodinger equation for the isotropic harmonic 
oscillator in one-dimensional complex space and the Schrodinger equation for the 
one-electron atom in two-dimensional space (section 2), and on the basis of this 
connection construct the algebraic way to use the oscillator basis functions for calcula- 
tions of atomic characteristics (section 3). To illustrate the algebraic method, worked 
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out in section 3, we build the solution of the Schrodinger equation for a two-dimensional 
hydrogenic donor in a magnetic field (section 4). By the use of the path integral, in 
section 5 we also establish the relationship between the two-dimensional Coulomb 
Green function and the Green function of the isotropic harmonic oscillator in one- 
dimensional complex space that permits one to use the operator form of the latter in 
concrete calculations. 

Le Van Hoang and Nguyen Thu Giang 

2. The connection between the Schrodinger equations 

Let us consider the Schrodinger equation for the isotropic harmonic oscillator in 
one-dimensional complex space with the coordinates 6, f *  

H W t )  = Z W f )  

t 

Here the asterisk denotes complex conjugate operation; w is a real positive number; 
natural units ( h  = c = m = 1) are used in our paper. 

By direct calculations one can show that the operator H commutes with the operator 

The scalar product of wavefunctions in the (-space will be defined as: 

(Wt)I$(t))= [ d 5 ' j  d5"y*(5', 5")+(5: 5") (4) 

where e= Re 5, 5"= Im 5. Thus operators H and L are Hermitian with respect to the 
scalar product (4). Hence equations (1) and (2) can be written as follows 

fi$(t) = - r w z $ ( t )  

So -4w2 can be regarded as an eigenvalue of the operator k For the operator fi to 
be Hermitian, the definition of the scalar product for wavefunctions must be changed 
as follows: 

c j . (n Id (5 ) )=41d5 '1d5" j . * (5 ' ,~ )6 (5 ' , 5 " )K* .  (7) 

Let us now make a substitution of the variables in equations (9, ( 6 )  using the following 
correlation? 

XI =f(t22+$2) 

t This transformation is a two-dimensional version of what is sometimes called the Kustaanheimo-Stiefel 
iranslormation in the three-dimensional case (Cordani 1989. Barut et 01 1979). 
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It is easy to see that x,, (A =U) are taken as components of the two-dimensional real 
vector r. After the substitution of variables (8) equations ( 5 ) ,  (6) take the form 

I 
I 

and the scalar product of wavefunctions (7) can be rewritten as follows: 

In equation (9) r = G ,  A=J'/Jx,,Jx,, h=m. From (9), (10) it follows that the 
function $(r) is a solution of the Schrodinger equation for the two-dimensional 
hydrogen-like atom with negative energy, if E = -$J' and 2 is the nuclear charge. In 
the coordinates r it can be obtained that 

i.e. the operator Lis an angular momentum operator of the two-dimensional hydrogen- 
like atom. 

3. Algebraic method in the solution of the Schrodinger equation 

Now we will show that the found connection will enable us to use the oscillator basis 
function to solve the atomic problems by purely algebraic methods. 

Let us define the operators 

where w is a real positive number. For the case of an isotropic harmonic oscillator 
like (l), (2) w is the oscillator frequency. But, as it will be shown in section 4, if we 
have to deal with an anharmonic oscillator, w will be represented as a parameter and 
it may be defined by the special equation (Komarovand Romanova 1982). The operators 
(12) satisfy the commutation relations 

[a(w), a+(w)l= 1 [No), b+(w)l= 1 (13) 

(we have only included non-zero commutators). Using (12), (13) we find that 

H =fw(a'a+ b tb+ 1 )  L = f (a 'a  - b'b) (14) 

IY) = (a+)"'(b+)"'lO(w)) ( 1 5 )  

HIT) = ZlY) LpP) = mi*) (16) 

Z = & ( n l +  n 2 +  1) m = & ( n l -  n2 )  (17) 

and the state vector (in non-normalized form) 

( n l  and n 2  are positive integers) is the solution of the equations 

with the eigenvalues 
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respectively. The vacuum-state 10) in (15) is determined by the equations 

and the condition of normalization (O(o)lO(o))= 1. 

eigenvalue of the angular momentum operator L, as follows: 

Le Van Hoang and Nguyen 7hu Giang 

dw) lO(w) )=  0 b(o)lO(w))= 0 (18) 

From the set of vectors (15) is built the vector In, m), which belongs to the integral 

In, m)= (a+)"""(b')"-"~O(o)) (19)  
where n is a positive integer, magnetic quantum number m is an integer and satisfies 
Iml s n. 

From the above-stated formulation of the relationship it can be concluded that the 
vector (19) is a solution of the Schrodinger equation for the two-dimensional hydrogen- 
like atom and it can be used as a Coulomb basis function in concrete calculations. 

Let us examine the matrix elements of the operators. Matrix elements of the operator 
A acting in r-space are found, as shown earlier, after transformation of the operator 
rA into .$-space, by means of the expression 

drY$,,(r)AY".,,,(r) = (Y(n, m)l rA]Y(n', m')) (20) 

where the state vector IY(n, m ) ) ,  corresponding to the wavefunction YVnm(r) of  the 
discrete spectrum of the hydrogen-like atom in two-dimensional space, is determined 
by equation (19) and the condition of normalization 

I 
( W n ,  m)l * IW, m)) = 1. (21) 

Expression (20) allows us to perform the calculations algebraically without using the 
explicit form of the wavefunctions in the coordinate representation. We start with a 
very simple unitary transformation to carry out the transition from one frequency to 
another: 

where 

WO', w ) = e x p { l n ~ ( a ( w ) b ( w ) - a ' ( w ) b + ( w ) ) }  (23) 
or in the normal form 

U ( w ' ,  w )  =exp(*a+(w)b'(w)) w ' t  0 

-[a'(w)a(w)+b'(w)b(o)t 11 In - 

Second, by transforming the operator A into &space and ;hen into the operators a 
(a') and b (b'), the latter will appear only in the following combinations: 

M ( o ) = a ( o ) b ( o )  M + ( u )  = a+(o )b+(o )  
N ( o ) =  a+(w)a(o)+b*(w)b(w) 
m l ( w )  = i ( a 2 ( o ) +  b*(o))  m l ( w ) =  -fi(a2(w)-b2(w)) 
m:(w) =f(a"(w) t b"(o))  m;(w)=fi(a''(o)-b+'(o)) (25) 
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n l ( o )  = a + ( o ) b ( w ) + b * ( w ) a ( w )  

n 2 ( w )  = i ( a + ( o ) b ( w )  - b + ( w ) a ( w ) )  

Q ( w )  = a*(w)a(w)  - b + ( w ) b ( w ) .  

1413 

The 10 operators in (25) generate a closed algebra and satisfy the following commutation 
relations (for brevity we write the operators without w )  

[ M , M + ] = N + l  [ M ,  N +  1 ] = 2 M  [ N +  1, M’] = 2 M t  

[m, ,  m:] = & ( N +  I)-ieyQ 

[ M ,  m:] = n, [m,,  M’] = n, 

[ m i ,  Q ]  = -2ie,mj 

[m,,  N +  1 1  =2mi 

[ M ,  n81 = 2m, 

[mi ,  TI,] = 28,M 

[ M , Q I = O  [ Q ,  M’I = 0 

[ni, n,] = i2sgQ 

[Q, 4 1  = 2iE,m: 

[ N +  1, m:] = 2 m t  

[ n , ,  M ” ] = 2 m :  

[n, ,  m;] = 2S,MC 

[n, ,  Q I  = - 2 E p j  [ n . ,  NI = 0 

(i, j = T ; z )  

where 

1 i = l  j = 2  

i = 2  j =  1. 

i = j  

By setting up the linear combinations from the operators (25) 

Lo, = i n <  & -1’ - d ~ + -  M )  L . = i g  8, 2 , Q L~ = $( M +  + M )  

L,,=$(m, + m:) 
(28) 

L,,=;i(m, - m t )  L,, = - f (  N + 1 )  

and introducing the definition 

LA, = -LM ( A , P = F V  (29) 

we obtain, with the aid of (26), 

[LA;, Lp.l= - i ( ~ ~ L ~ ” + g ~ ~ A p - g * ” L ~ ~ - g ~ ~ L A ” )  (30) 

with the metric (- --++). Thus we find that the algebra of operators (25)  is the Lie 
algebra of the group S0(3,2), which is the dynamical symmetry group of the 
Schrodinger equation for the two-dimensional hydrogen-like atom (see Malkin and 
Manko 1979). As in Komarov and Romanova (1982) we note that transformation (22) 
permits us to calculate the matrix elements of the operators, between the state vectors, 
which are connected with different values of the charge in equation (9). 
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For further use we write some operators in the creation and annihilation operators 
form: 

1 
( A  =i;z) r = - ( M + M * + N + l )  

1 
x,, =-(m,,+ ml +n,) 2w 2w 

a 
ax, axA 

x,, -=$( M - M +  - 1 )  3 1  + r -=T(m, , -m, )  

a2 
ax, ax,, 

r- =J ( M  + M +  - N - 1) 

4. Example of application: two-dimensional hydrogenic donor states in a 
magnetic field 

The Schrodinger equation for a two-dimensional hydrogenic donor in the presence 
of a magnetic field B, which is perpendicular to the two-dimensional plane, can he 
written as 

H Y ( r ) =  E"(,) 

Here we use the atomic units system and 
E = E / R *  y =  hw,/2R* 

where R* =pe4/2h'eZ is the cyclotron frequency; the coordinates are in units of the 
effective Bohr radius a* = Eh'/e'p; p and E are the electron effective mass and static 
dielectric constant respectively; 2 is equal to one. 

As shown in sections 2 and 3, we can use the simple algebraic method to solve the 
equation (31), (32), writing it in the &space by the use of the variables substitution 
(8). We obtain 

Using operators (12), (25) we can rewrite (33) as follows: 

(A - EB)IY) = 0 

A =  - - ( M +  M'- N - I ) + - ( M +  M + + N + l ) ' f 2 ( M  + M + t  N + l ) L - 2  w Y 2  
2 64w' 4w 

(34) 
B = ( M  + M + +  N +  1)/2w 

where w is an arbitrary real parameter. It is easy to see from ( 2 5 )  and (26)  that the 
operator L (L=$Q)  commutes with all operators in the equation ( 3 4 ,  so that if we 
use the suitable basis function as (19), the equation (34) is represented as an equation 
for a two-dimensional anharmonic oscillator and the well known operator method 
(Feranchuk and Komarov 1982) can be used for its solution. Thus to build the solution 
of (34) we use the basis functions (19) 

(a')"'"(b')"-"lO(w)). 
1 

n + m ) ! ( n - m ) !  In, m )  = J( (35 )  
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Matrix elements of operators A and B for basis functions (35) can be obtained 
algebraically without difficulty using correlation (13) 

A; = ( j m [  A [  nm) 

w my 3y2 
4 4 0  640 

- - + - + y ( 5 n ’ + l - m z  

w my 3y2 
4 40 64w 

- - + - + - 7 ( 5 n ’ +  10n+6- m ’ ) ) J ( n +  1)2-m2 S,.,,, 

+ (6n - 3) 8,,- ,J(n’- m’)((n - 1)’- m’) 

+ (6n + 9) 8j,n+zd(( n + 2)’ - in’)( ( n  + 1)2 - m’) 

+ ~ , , . , , J ( ( n + 3 ) ’ - m ’ ) ( ( n + ~ ) ’ - m ~ ) ( ( n +  ~ ) ’ - m ’ ) )  

BE = (jml B [ n m )  

= (S ,,“- , -+(2n+ 1) 8,,+8,.+,J((n+ ~ ) ’ - m ’ ) ) / ~ w .  (36) 
The exact solution of (34) can be written as follows: 

(37) 
k = l m  
h f n  

Putting (37) into (34) we obtain the equations for E., and for the coefficients C;“: 

h + n  

Taking into account the peculiarity of matrix elements A,”, B,”, it is easy to see that 
the sums in (38) are finite by few non-trivial terms and we can solve (38) by the simple 
iterative method to obtain the solution with any accuracy. The parameter w can be 
chosen so that the speed of an iterative convergence is satisfactory (see Chan Za An 
et a1 1986). The zero-order of the operator method 

as shown in the same problem, like the problem of an anharmonic oscillator (see 
Feranchuk and Komarov 1984), is very accurate if we choose the parameter w by the 
equation 

aE?;(w)/aw =o (40) 
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which leads to the equation for w 

Le Van Hoang and Nguyen 7" Giang 

w =-+-+5n2+5n+3-3m2) ,  z Y 2  
n + f  80 (41) 

Detailed investigation of the problem of the hydrogenic donor states will be given in 
another paper. In the present paper we only consider it as an example for illustration 
of the algebraic method using the connection between the Schrodinger equation for 
two-dimensional hydrogen-like atoms and the Schrodinger equation for the isotropic 
harmonic oscillator. 

5. The connection between the Green functions 

The Green function for equations (l), (2) in the 'energy' representation is a solution 
of the following equation: 

where S(x) is a Dirac 8-function. One of the ways of constructing the function 
U([, q ;  2)  is to represent it as a path integral (see, for example, Slavnov and Fadeev 
1978) 

U(& 1 ) ; Z ) = ] ~ ~ d 9 e ' ~ ' ~  D2c(4')exp[i J b b d 9 r ( 2 ~ ~ - ~ w 2 ~ ~ * )  (43) 

where f (  9') = Jg( 4')/84' and c(4) = 6, c(0) = q. Equation (43) is regarded as a limit 
(when E -t 0, N + 00, N E  -t 9) of the following expression: 

+ Z& -tw2&5*(k - 1)[(k - 1) (44) 

where c ( N )  = .$, c(0) = I) and d2c(k) = d r ( k )  df'(k) (for brevity, we use the notation 
c ( k ) =  C ( h ) ) .  To establish the relationship between the function U(c, q ;  Z) and the 
two-dimensional Coulomb Green function, we change in (44) the variables, choosing 
as in (8) the new variables xI(4), x 2 ( 9 ) .  By direct calculations we can easily ascertain 
that 

&8)i*(4) = i , ,(9)iA(9)/4r(9) (45) 
where xA(4)=dxA(9) /d4  and r ( 4 ) = J w J = c * ( 9 ) ( ( 9 ) .  From (8) it follows 
that in calculating the path integral using (44), the appropriate substitution of 
variables is 
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Therefore it follows 

+ Z & - + o 2 w ( k - 1 )  . I1 (47) 

The last step is the change of 'time' variable: let 

E ( k ) = E r ( k )  (48) 

which in the limit s+O is equivalent to the introduction of a new time variable 

t = Io' d 4' r( 9). 

As a result we have 

;U(& 7; Z )  = K(r, r'; -4o') 

(49) 

where r( t )  = r and r(0) = r'. Denoting E = -;a2 we obtain from ( S O )  

E+fA+- K(r,r'; E ) = i a ( r - r ' )  (51) I fl 
( A  is the Laplace operator), i.e. K(r, r'; E )  is the 'energy' representation of the two- 
dimensional Coulomb Green function. Starting from the well known expression of the 
Green function of the isotropic harmonic oscillator in one-dimensional complex space 

(52) 
io 

I sm t 

by the changing of the variables as is shown in ( S ) ,  we obtain the two-dimensional 
Coulomb Green function 

x exp -((t*t+ q*v) cos t -  (t*v + 7 * 5 ) ) ]  

K(r,r';E)=- 
4T 

(53) I iw 
{sin t 

xexp - ( ( r + r ' )  cos ~ - ~ J ; ~ c o s ( P - P ' ) )  . 

The relationship established above allows one to use the operator form of the function 
U(& q ;  2) in concrete calculations and thus to reduce rather complicated calculations 
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of matrix elements of the Coulomb Green function to purely algebraic procedures of 
transforming the products of the creation and annihilation operators to a normal form 
(see Le Van Hoang et al 1989). 

Le Van Hoang and Nguyen Thu Giang 
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